Table of Contents

TERMINOLOGY .......................................................................................................................... 2
EXECUTIVE SUMMARY ............................................................................................................... 2
INTRODUCTION ........................................................................................................................... 4
THE PROCESS ................................................................................................................................ 5
STEP 1: NEIGHBORHOOD NOTIFICATION .................................................................................. 6
STEP 2: COLLABORATION ............................................................................................................ 6
STEP 3: DATA COLLECTION .......................................................................................................... 6
  FLOOD INSURANCE DATA ......................................................................................................... 7
  DRAINAGE INFORMATION ....................................................................................................... 8
  MAPS ........................................................................................................................................ 9
  BUILDING INFORMATION ......................................................................................................... 11
STEP 4: MITIGATION MEASURES ............................................................................................... 14
  I. ACQUISITION ....................................................................................................................... 14
  II. ELEVATION ........................................................................................................................ 15
  III. DRY FLOODPROOFING .................................................................................................... 16
  IV. UTILITY PROTECTION ....................................................................................................... 17
  V. DRAINAGE IMPROVEMENTS ............................................................................................ 18
  VI. MAINTAINING INSURANCE .............................................................................................. 18
STEP 5: FINDINGS & RECOMMENDATIONS ............................................................................ 19
POSSIBLE FUNDING SOURCES ............................................................................................... 20
APPENDIX A: LETTER TO RESIDENTS ....................................................................................... 22
APPENDIX B: HOMEOWNER’S COMMENTS* ............................................................................ 23
TERMINOLOGY

1% Annual Flood Chance: The flood that has a one percent (1%) chance of being equaled or exceeded each year. Also known as the base flood or regulatory floodplain.

Area Analysis: An approach to identify repeatedly flooded areas, evaluate mitigation approaches, and determine the most appropriate alternatives to reduce future repeated flood losses.

BFE: Base Flood Elevation - The elevation of the crest of the base flood or one percent (1%) annual chance.

CRS: Community Rating System

FEMA: Federal Emergency Management Agency

FIRM: Flood Insurance Rate Map

Floodway: The channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

Freeboard: A factor of safety usually expressed in feet above the Base Flood Elevation (BFE) for purposes of floodplain management. Also known as the design flood elevation.

GIS: Geographic Information Systems

Hazard Mitigation: Any sustained action taken to reduce or eliminate long-term risk to life and property from a hazardous event.

ICC: Increased Cost of Compliance, a $30,000 rider on flood insurance policies for policy holders located in the special flood hazard area that can be used to bring the structure into compliance in the event that it is substantially damaged by a flood.

NFIP: National Flood Insurance Program

Repetitive Loss property (RL): An NFIP-insured property where two or more claim payments of more than $1,000 have been paid within a 10-year period since 1978.

Severe Repetitive Loss Property (SRL): A 1-4 family residence that is a repetitive loss property that has had four or more claims of more than $5,000 or two claims that cumulatively exceed the reported building’s value.

Substantial Improvement: The repair, reconstruction, or improvement of a structure, the cost of which equals or exceeds 50% of the market value of the structure either, (1) before the improvement or repair is started, or (2) if the structure has been damaged and is being restored, before the damage occurred.

Special Flood Hazard Area: The land area covered by the floodwaters of the base flood is the Special Flood Hazard Area (SFHA) on NFIP maps. The SFHA is the area where the National Flood Insurance Program's (NFIP's) floodplain management regulations must be enforced and the area where the mandatory purchase of flood insurance applies.
EXECUTIVE SUMMARY

Background
The National Flood Insurance Program (NFIP) is continually faced with the task of paying claims while trying to keep the price of flood insurance at an affordable level. It has a particular problem with repetitive flood loss properties, which are estimated to cost $3.5 million per year in flood insurance claim payments throughout the United States. Repetitive flood loss properties represent only 1.4% of all flood insurance policies, yet historically they have accounted for nearly one-fourth of the claim payments (over $9 billion to date). Mitigating these repeatedly flooded properties will reduce the overall costs to the NFIP, the communities in which they are located, and the individual homeowners. The City of St. Petersburg conducted an area analysis based on the Repetitive Loss Area Analysis, as described on page 5 of this report and in accordance to the Community Rating System. This area analysis follows FEMA guidelines to determine why an area has repeated flood losses and what alternative flood protection measures would help break the cycle of repetitive flooding.

Study Area
The repetitive loss area analysis is a detailed mitigation plan for a repetitive loss area. The study area for this report is located in the Shore Acres area, stretching from approximately 62nd Avenue North East, to Bayou Placido Boulevard North East, and in-between Shore Acres Boulevard North East, to Jersey Street North East. There are 1530 structures in the study area. The majority of them are residential, with a fire station, school, church, care facility, and grocery store rounding out the rest. More information on these properties can be found on page 4 within the introduction.

Problem Statement
Flooding is caused by high tides and heavy rains and is aggravated by two problems:

- The study area is low lying and close to the bay. Tidal flooding is a main cause of flooding within this area, especially when a major rain event coincides with a high tide.
- The storm drains are sometimes overgrown or otherwise unable to convey water correctly. Therefore, water tends to drain slowly into the bay.

There have been some drainage improvements, but they have not stopped all flooding.

Recommendations
- Encourage everyone to pursue a mitigation measure.
- Assist interested property owners in applying for a mitigation grant.
- Street cleaning or sweeping program to remove debris from street and drainage culverts.
- Seek out and secure funding for the drainage improvements outlined in this report.
- Improve the City’s CRS classification.
- Installing individual backflow preventers at the street catch basin structure.
- Education campaign about keeping streets and drainage culverts clean.

For residents of the study area
- Contact the City for more information about possible funding opportunities
- Review the alternative mitigation measures discussed in this analysis and implement those that are most appropriate for their situation.
- Purchase and maintain a flood insurance policy on the home and its contents.
- Report flooding hazards via See Click Fix or Mayor’s Action line.
INTRODUCTION

St. Petersburg is exposed to flooding from hurricanes, tropical storms, storm water runoff, and storm surges from Tampa Bay, Boca Ciega Bay, and the Gulf of Mexico, as well as flooding from St. Joes Creek and many small lakes within the area.

St. Petersburg is mostly flat with some rise towards the center of the peninsula, creating areas where water runs very quickly to the bay and other areas where it drains away slowly. There are several communities built over bayous and along the coastline. Flooding of streets, yards, and buildings often occur from heavy rains in some areas.

In sum, areas of the City can be flooded from overwhelmed bayous, creeks, coastal sources, sheet flow, and local drainage ways. The official FEMA Flood Insurance Rate Map designates the Special Flood Hazard Areas (SFHA), the deeper riverine and coastal flood prone areas as A, AE, or VE zones and the entire City may be subject to flooding.

In most areas, especially outside the SFHA, flooding is relatively shallow. Residents have several days of warning before a coastal storm occurs and can take steps to protect themselves from flooding if they have necessary information.

There have been some drainage improvements, but they have not stopped all flooding. For more in-depth analysis regarding improvements reference building information on page 11.

Since flooding typically occurs over an area that may affect several buildings, determining a repetitive loss area may include homes not previously flooded, but are instead surrounded by those structures that have been repetitively flooded. This allows determination of drainage and may indicate where future homes may sustain flood damage. Additionally, because repetitive loss structures are privacy protected by the federal government it is necessary to include surrounding homes, so as to maintain the privacy of those repetitive loss structures as per the Privacy Act of 1974.

The RLAA is part of the Community Rating System, which is a “voluntary incentive program that recognizes and encourages community floodplain activities that exceed the minimum National Flood Insurance Program (NFIP) requirements” (www.FEMA.gov). Participating communities are rewarded with reduced insurance premiums.
**THE PROCESS**

The repetitive loss area analysis is a detailed mitigation plan for a repetitive loss area. It provides more specific guidance on how to reduce damage from repetitive flooding than a community-wide floodplain management or hazard mitigation plan. Shore Acres was one of the two areas identified as a repetitive loss area. In order to better understand the issues in the area a process must be followed according to the NFIP CRS program.

The FEMA-prescribed five step process for conducting an area analyses is as follows:

Step 1: Advise all the property owners in the repetitive flood loss area that the repetitive loss area analysis will be conducted to determine the problems associated with flooding.

Step 2: Contact agencies or organizations that may have plans that could affect the cause or impacts of the flooding.

Step 3: Collect data on the analysis area and each building in the identified study area within the neighborhood to determine the cause(s) of the repetitive damage.

Step 4: Review alternative mitigation approaches and determine whether any property protection measures or drainage improvements are feasible.

Step 5: Document the findings, including information gathered from agencies and organizations, and relevant maps of the analysis area.
STEP 1: NEIGHBORHOOD NOTIFICATION

The first step in FEMA’s five-step process is to notify the residents in the area about the project. In February 2019 the City of St. Petersburg Community Rating System Coordinator sent out a letter to the homeowners introducing them to the project.

The letter asked homeowners to submit any flooding concerns to the CRS Coordinator via mail, email, or phone, and to include address and pertinent information. One thousand five hundred and thirty-nine (1539) letters were mailed out.

Copies of the letter and homeowner comments can be found in Appendices A & B of this report.

STEP 2: COLLABORATION

Coordination with relevant agencies, offices, and organizations is an important step in the analysis process. This step helps to open lines of communication among those interested in flood protection in the St. Petersburg area. The City collected information and data in order to complete this analysis from the Stormwater and Engineering Division, Construction Services and Permitting, and the Geographic Information System data provided from FEMA and Pinellas County.

STEP 3: DATA COLLECTION

The third step in the process is the collection of data that pertains to the area; both as a whole and specifically about the causes of the repetitive flooding. The data was collected through coordination with several agencies and departments.

Although the entire city is flood prone, certain areas have been harder hit than others. Using repetitive flood insurance claims, the City has identified two repetitive loss areas, Shore Acres and Riviera Bay.

Of the approximate 82,300 buildings in the City, 373 have been paid at least 2 claims of $1000 over a 10-year period (FEMA’s definition of a repetitive loss property). There are 51 structures on FEMA’s repetitive loss list that have been relocated, elevated, or otherwise improved and are no longer subject to repetitive flood damage.

This report focuses on Shore Acres and the houses identified in the mapped repetitive loss area as depicted on the page 9 map.
FLOOD INSURANCE DATA

There are two sources of flood insurance data that the City of St. Petersburg has reviewed. Those sources of data are:

A. The Digital Flood Insurance Rate Map (DFIRM)
B. Claims data

A. The Digital Flood Insurance Rate Map: The City of St. Petersburg Flood Insurance Rate Map, September 2003: A Flood Insurance Rate Map (FIRM), published by FEMA, shows potential flood risk according to zones of severity and is used in setting flood insurance rates. The regulatory floodplain used by FEMA for the floodplain management and insurance aspects of the National Flood Insurance Program (NFIP) is based on the elevation of the 1% annual flood chance or base flood. This type of flood has a 1% chance of occurring in any given year. For another frame of reference, the 1% annual flood has a 26% chance of occurring over the life of a 30-year mortgage. It is important to note that more frequent flooding does occur in the regulatory floodplain, as witnessed by the number of repetitive loss properties. The study area falls in only one flood zone: the riskier AE Zone.

The Base Flood Elevation (BFE) is the elevation of the 1% chance annual flood above mean sea level. In October 2015, St. Petersburg now requires two feet of freeboard. This means that all new or substantially improved residential construction must be at least two feet above the BFE. The BFE for the area is nine feet above sea level.

B. Claims Data: The Privacy Act of 1974 (5 U.S.C. 522a) restricts the release of certain types of data to the public. Flood insurance policy and claims data are included in the list of restricted information. FEMA can only release such data to state and local governments, and only if the data are used for floodplain management, mitigation, or research purposes. Therefore, this report does not identify the repetitive loss properties or include claims data for any individual property. Rather, it discusses them only in summary form.

The City of St. Petersburg obtained claims data from FEMA Region IV for all repetitive loss properties in the area. There are 250 (16.33%) properties within the 1530 property study area that qualify as repetitive loss. Of those repetitive loss properties, 27 are considered severe repetitive loss properties. Homeowners for the repetitive loss properties have made 740 claims and received $13,604,868.40 in flood insurance payments since 1978. The average repetitive flood loss claim is $17,971.48.

It is likely that the data in this section understates the flooding problem for the following reasons:

1. NFIP records do not include claims data prior to 1978, so there could have been additional losses not shown here.
2. Policy holders may not have submitted claims for smaller floods for fear of it affecting their coverage or premium rates.
3. Only data for listed repetitive loss properties were reviewed. There could be other properties that have been repeatedly flooded but did not have insurance at the time of the flood or did not submit claims.

The losses only account for items covered by the insurance policy. Things not covered include living expenses during evacuation, swimming pools, and automobiles.
DRAINAGE INFORMATION

The City of St. Petersburg examined two areas of related information on the area’s drainage. Those two areas are:

A. Canals and Culverts
B. Shore Acres Watershed

A. Canals and Culverts: The City of St. Petersburg relies on several canals and culverts to drain storm water from the streets. The study area is directly south of Riviera Bayou which has a drainage area of roughly 416.48 square miles. There is Butterfly Lake and many canals that provide drainage to the area listed on the page 10 map.

Butterfly Lake and the canals are unable at this time to properly drain water during high tide events coupled with heavy rainfall. When it floods, this makes it difficult for residents in the study area to evacuate the area and to get to their residence. Additional flooding is caused from vehicles driving through the high water that then pushes the water into adjacent houses.

B. Shore Acres Watershed: This large watershed is over 416.48 square miles and drains in several areas to the bay. The drainage from the Shore Acres Watershed is not a major factor for flooding within this area. There are several drainage ditches, small lakes, and canals within the area that may absorb some of the watershed runoff, but not all. Additionally, when these ditches, small lakes, and canals fill they could cause additional flooding throughout the area surrounding them.
MAPS

Repetitive Loss Area

Shore Acres
BUILDING INFORMATION

As discussed in Step 1: A neighborhood notification letter was mailed out to the residents, informing them that an analysis was going to be conducted with reference to flooding. Of the 1530 properties to which postcards were sent.

The residents who commented on the postcard offered insight into the flooding issues in the area and can be found in Appendix B of this report on page 22.

From February to March the City visited the study area and collected data on each property. The City collected information such as the type of structure, construction, condition, the number of stories, drainage patterns, and a photo.

The following chart depicts the building classifications within Shore Acres. Most of structures are single-story, slab on grade, constructed from masonry or brick. These low-lying structures are more prone to flooding.
Distribution of Shore Building Height

- 1 Story: 81%
- 2 Story: 17%
- 3 Story: 1%
- 4+ / Unknown: 1%

Distribution of Shore Acres Structure Material

- Masonry: 78%
- Brick: 11%
- Siding (Wood, Vinyl): 9%
- Unsure: 1%
Based on the data collected the following bullets summarize the repetitive flooding problems in the area:

- All the structures fall in the riskier AE Zone.
- Flooding is caused by heavy rains, but aggravated by two problems:
  - High tides
  - Poor street drainage
  - Wake from vehicles
- There have been some drainage improvements made to the area, but they have not stopped all flooding.

Mitigation activities, demolition, and new construction activities have helped in lowering the number of flood damaged structures. However, as can be seen from the charts above, a great majority remain prone to flooding because they are not properly elevated.

In conclusion, all the homes within the study area are subject to flooding. However, most of the homes that are slab on grade have a higher chance of flooding. These homes were typically built before the Floodplain management regulations were adopted in 1972.
STEP 4: MITIGATION MEASURES

Knowing the flooding history, type, and condition of the buildings in the area, leads to the fourth step in the area analysis procedure – a review of alternative mitigation approaches to protect properties from, or reduce, future flood damage. Property owners should look at these alternatives but understand they are not all guaranteed to provide protection at different levels of flooding. Six approaches were reviewed:

I. Acquisition
II. Elevating the houses above the 1% annual flood level
III. Dry floodproofing
IV. Utility protection
V. Drainage improvements
VI. Maintaining flood insurance coverage on the building

I. ACQUISITION

This measure involves buying one or more properties and clearing the site. If there is no building subject to flooding, there is no flood damage. Acquisitions are usually recommended where the flood hazard is so great or so frequent that it is not safe to leave the structure on the site.

An alternative to buying and clearing the whole subdivision is buying out individual, “worst case,” structures with FEMA funds.

A. Cost: This approach would involve purchasing and clearing the lowest or the most severe repeatedly flooded homes. If FEMA funds are to be used, three requirements will apply:
   1. The applicant for FEMA must demonstrate that the benefits exceed the costs, using FEMA’s benefit/cost software.
   2. The owner must be a willing seller.
   3. The parcel must be deeded to a public agency that agrees to maintain the lot and keep it forever as open space.

B. Feasibility: Due to the high cost and difficulty to obtain a favorable benefit-cost ratio in shallow flooding areas, acquisitions are reserved for the worst case buildings. Not everyone wants to sell their home, so a checkerboard pattern of vacant and occupied lots often remains after a buyout project, leaving “holes” in the neighborhood. There is no reduction in expenses to maintain the neighborhood’s infrastructure for the City, although the tax base is reduced. The vacant lots must be maintained by the new owner agency, and additional expense is added to the community. If the lot is only minimally maintained, its presence may reduce the property values of the remaining houses. The City of ST. Petersburg is not considering acquisitions at this time for the above reasons.
II. ELEVATION

Raising the structure above the flood level is generally viewed as the best flood protection measure, short of removing the building from the floodplain. All damageable portions of the building and its contents are high and dry during a flood, which flows under the building instead of into the house. Houses can be elevated on fill, posts/piles, or a crawlspace.

A house elevated on fill requires adding a specific type of dirt to a lot and building the house on top of the added dirt. It should be noted that St. Petersburg does not allow fill to be brought into the floodplain to elevate the house. Unless that fill is part of a stem-wall foundation.

A house elevated on posts/piles is either built or raised on a foundation of piers that are driven into the earth and rise high enough above the ground to elevate the house above the flow of flood water or the design flood elevation.

A house elevated on a crawlspace or enclosure is built or raised on a continuous wall-like foundation that elevates the house above the design flood level. It is important to include vents or openings in the walls below the design flood level that are appropriately sized: one square inch for each square foot of the crawlspace or enclosures footprint. Additionally, all materials below the design flood level must be flood resistant and all machinery, equipment, and plumbing must be above the design flood level.

A. Cost: A majority of the cost to elevate a building is in the preparation and foundation construction. The cost to elevate six feet is little more than the cost to go up two feet. Elevation is usually cost-effective for wood frame buildings on posts/piles or crawlspace because it is easiest for lifting equipment to be used under the floor and disruption to the habitable part of the house is minimal. Elevating a slab house is much costlier and disruptive. In St. Petersburg, 60% percent of the houses in the study area are on a slab. The actual cost of elevating a building depends on factors such as its condition, whether it is masonry or brick faced, and if additions have been added on over time. While the cost of elevating a home can be high, there are funding programs that can help. The usual arrangement is for a FEMA grant to pay 75% of the cost while the owner pays the other 25%. In the case of elevating a slab foundation, the homeowner’s portion could be as high as $25,000 or more. In some cases, assistance can be provided by Increased Cost of Compliance (ICC) funds, which is discussed on page 19 under Possible Funding Sources, or the use of state funds.

B. Feasibility: Federal funding support for an elevation project requires a study that shows that the benefits of the project exceed the cost of the elevation. Project benefits include savings in insurance claims paid on the structure. Elevating a masonry or a slab home can cost up to $100,000, which means that benefit/cost ratios may be low. Looking at each property individually could result in funding for the worst-case properties, i.e., those that are the lowest below the base flood elevation, subject to the most frequent flooding, and in good enough condition to elevate.
III. DRY FLOODPROOFING

This measure keeps floodwaters out of a building by modifying the structure. Walls are coated with waterproofing compounds or plastic sheeting. Openings (i.e. doors, windows, and vents) are closed either permanently, or temporarily with removable shields or sandbags.

Make the walls watertight. This is easiest to do for masonry or brick faced walls. The brick or stucco walls can be covered with a waterproof sealant and bricked or stuccoed over with a veneer to camouflage the sealant. Houses with wood, vinyl, or metal siding need to be wrapped with plastic sheeting to make walls watertight, and then covered with a veneer to camouflage and protect the plastic sheeting. Provide closures, such as removable shields or sandbags, for the openings; including doors, windows, dryer vents and weep holes. There must also be an account for sewer backup and other sources of water entering the building. For shallow flood levels, this can be done with a floor drain plug or standpipe; although a check valve system is more secure.

Dry floodproofing employs the building itself as part of the barrier to the passage of floodwaters, and therefore this technique is only recommended for buildings with slab foundations that are not cracked. The solid slab foundation prevents floodwaters from entering a building from below. Also, even if the building is in sound condition, tests by the Corps of Engineers have shown that dry floodproofing should not be used for depths greater than three feet over the floor, because water pressure on the structure can collapse the walls and/or buckle the floor.

Dry floodproofing is a mitigation technique that is appropriate for some houses in the Shore Acres study area: those with slab foundations that typically receive floodwater up to three feet in the house. From the fieldwork it was found that eighty-nine percent of the houses in the analysis area are on slab foundations.

Not all parts of the building need to be floodproofed. It is difficult to floodproof a garage door, for example, so some owners let the garage flood and floodproof the walls between the garage and the rest of the house. Appliances, electrical outlets, and other damage-prone materials located in the garage should be elevated above the expected flood levels.

It should also be noted that, Floodproofing of residential structures does not allow a homeowner to circumvent the FEMA 49% rule or the building code. They must still follow all applicable regulations and the Floodplain Ordinance for the City.

Dry floodproofing has the following shortcomings as a flood protection measure:

- It usually requires human intervention, i.e., someone must be home to close the openings.
- Its success depends on the building’s condition, which may not be readily evident. It is very difficult to tell if there are cracks in the slab under the floor covering.
- Periodic maintenance is required to check for cracks in the walls and to ensure that the waterproofing compounds do not decompose.
- There is no government financial assistance programs available for dry floodproofing, therefore the entire cost of the project must be paid by the homeowner.
- The NFIP will typically not offer a lower insurance rate for dry floodproofed residences. However, this may be a viable option if homeowners want to protect their structure and contents.
A. Cost: The cost for a floodproofing project can vary according to the building’s construction and condition. It can range from $5,000 to $20,000, depending on how secure the owner wants to be from flooding. Owners can do some of the work by themselves, although an experienced contractor provides greater security. Each property owner can determine how much of their own labor they can contribute and whether the cost and appearance of a project is worth the protection from flooding that it may provide.

B. Feasibility: As with floodwalls, floodproofing is appropriate where flood depths are shallow and are of relatively short duration. It can be an effective measure for some of the structures and flood conditions found in the study analysis area. It can also be more attractive than a floodwall around a house. However, floodproofing requires the homeowner to install or place door and window shields or sandbags and to ensure maintenance on a yearly basis. This may be difficult for the elderly or disabled. Finally, ample warning of flooding must be available, so the homeowner can determine when to place the door or window shields and sandbags.

IV. UTILITY PROTECTION

This measure applies to several different utilities that can be adversely affected by floodwaters such as:

- Heating, Ventilation, and Air Conditioning (HVAC) systems
- Fuel meters and pipes
- Electrical service boxes, wiring and fixtures
- Sewage systems
- Drinking Water systems

Damage to utilities can prevent a residence that remains structurally sound after a flood from being reoccupied. Retrofitting utilities includes things as simple as raising them above the flood level and building small walls around furnaces and water heaters to protect from shallow flooding.

A. Cost: The cost for protecting utilities varies and is dependent upon the measure itself, condition of the system, structure, and foundation. A lot of the measures can be performed by the homeowners themselves, although it is always a good idea to consult a professional contractor and/or engineer (depending on the project). The costs can be lower when done as part of a repair or remodeling project. Residents interested in pursuing a retrofitting measure to protect their utilities should contact the City of St. Petersburg to determine whether a permit is required.

B. Feasibility: Given that the flooding experienced by the homeowners in the Shore Acres study area includes both shallow and deep flooding, utility protection is an acceptable mitigation measure. Interested homeowners should examine their flooding history and decide if utility protection is an appropriate measure for their building.
V. DRAINAGE IMPROVEMENTS

The Engineering and Storm water Department prepared a Master Drainage plan for the entire City of St. Petersburg. The Plan has a list of recommendations that were created after reviewing previous studies and reports. There are several different drainage improvements called for in the Plan.

<table>
<thead>
<tr>
<th>Date</th>
<th>Project Name/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/03/07</td>
<td>Shore Acres Water Quality &amp; Flood Prevention Vaults</td>
</tr>
<tr>
<td>12/09/09</td>
<td>Shore Acres Storm Water Vaults Phase 2</td>
</tr>
<tr>
<td>12/09/09</td>
<td>Shore Acres Storm Water Vaults Phase 3</td>
</tr>
<tr>
<td>12/30/09</td>
<td>Shore Acres Storm Water Vaults Phase 4</td>
</tr>
</tbody>
</table>

These projects helped to reduce some of the flooding within the Shore Acres Repetitive Loss area. No other projects are currently proposed for this area. Maintenance for all projects and ongoing street sweeping continues for this area.

VI. MAINTAINING INSURANCE

Although insurance is not a mitigation measure that reduces property damage from a flood, a National Flood Insurance Program policy has the following advantages for the homeowner or renter:

1. A flood insurance policy covers surface flooding from the overflow of inland or tidal waters or from storm water runoff.

2. Flood insurance may be the only source of assistance to help owners of damaged property quickly pay for cleanup and repairs after a disaster. The ensures that people can get back into their homes faster than if they had to wait for disaster assistance funding, which often is in the form of a loan and may take months to pay.

3. Once in effect there is no need for human intervention. Coverage is available for the contents of a home as well as for the structure. Renters can buy contents coverage, even if the building owner does not buy coverage for the structure itself.

Cost: Flood insurance rates are based on several factors including what flood zone the building falls in and the age of the structure. All the homes in the study area fall in the AE zone. Homes constructed before December 31st, 1974 are “pre-FIRM” buildings, which means that they were built before the date of the first FIRM for the community, and are thus eligible for the “subsidized” flood insurance premium rates.

A building that is located in the AE flood zone and constructed or substantially improved after the date of the most current FIRM - such as one built or substantially improved – is required to be built above the base flood elevation and is therefore subject to rates based on the actual risk rather than a subsidized rate. Rates on pre-FIRM buildings are subsidized because the flood risk was unknown at the time of construction.

If a pre-FIRM house in the SFHA is elevated to the design flood elevation, the owner will be able to take advantage of the much lower post-FIRM rates.
Communities that join the CRS complete floodplain management activities that are worth a certain amount of credit. The more credit earned, the better the class ranking of that community. The CRS has 10 classes; a Class ranking of 10 carries the lowest flood insurance premium reduction, whereas a Class 1 carries the maximum discount. The City of St Petersburg has a CRS Class of 5.

**STEP 5: FINDINGS & RECOMMENDATIONS**

A. **Findings**

Properties in the Shore Acres study area are subject to flooding due to heavy rains, high tide, and drainage problems. When Sunlit-cove and the connecting canals are inundated by heavy rains, especially during high tides, it does not have the capacity to convey the water out of the area quickly enough. This is mainly due to backflow and that pipes are either under water or do not close due to barnacles. There is also concern over the drains being clogged from debris and unable to convey water from the street in a timely fashion.

B. **Recommendations**

1. The City of St. Petersburg should continue to encourage everyone to pursue a mitigation measure. Assist interested property owners in applying for a mitigation grant. Address the issues with the street drainage in order to improve the drainage in the study area. Institute a maintenance program that encourages homeowners to frequently clear their ditches of debris to ensure open flow for storm water. Seek out and secure funding for the drainage improvements outlined in this report. Improve the City’s CRS classification and adopt this Repetitive Loss Area Analysis according to the process detailed in the CRS Coordinator’s Manual.

2. For the residents of the study area, they should contact the City of St. Petersburg for more information about possible funding opportunities and site visits to determine remedial measures. Review the alternative mitigation measures discussed in this analysis and implement those that are most appropriate for their situation. Purchase and maintain a flood insurance policy on the home and its contents.
POSSIBLE FUNDING SOURCES

There are several possible sources of funding for mitigation projects:

A. FEMA grants: Most of the FEMA programs provide 75% of the cost of a project. In most Gulf communities, the 25% non-FEMA share is paid by the benefitting property owner. Each program has different Congressional authorization and slightly different rules.

1. The Hazard Mitigation Grant Program (HMGP): The HMGP provides grants to States and local governments to implement long-term hazard mitigation measures after a major disaster declaration. Projects must provide a long-term solution to a problem (e.g., elevation of a home to reduce the risk of flood damages as opposed to buying sandbags and pumps to fight the flood). Examples of eligible projects include acquisition and elevation, as well as local drainage projects.

2. The Severe Repetitive Loss Program (SRL): The Severe Repetitive Loss (SRL) grant program funds mitigation projects for properties on the severe repetitive loss list. Eligible flood mitigation projects include: Acquisition and demolition or relocation of structures that are listed on FEMA’s severe repetitive loss list and conversion of the property to open space. Elevation of existing SRL structures to at least the Base Flood Elevation (BFE). There is a new SRL ICC Program that can be used to cover the non-FEMA share of the cost. That program is discussed further in bullet C below.

B. The Flood Mitigation Assistance Program (FMA): FMA funds assist States and communities in implementing measures that reduce or eliminate the long-term risk of flood damage to structures insured under the NFIP. Project Grants to implement measures to reduce flood losses, such as elevation, acquisition, or relocation of NFIP-insured structures. States are encouraged to prioritize FMA funds for applications that include repetitive loss properties; these include structures with 2 or more losses each with a claim of at least $1,000 within any ten-year period since 1978.

1. Pre-Disaster Mitigation Program (PDM): The Pre-Disaster Mitigation (PDM) program provides funds to states, territories, Indian tribal governments, communities, and universities for hazard mitigation planning and the implementation of mitigation projects prior to a disaster event. For more information visit http://www.fema.gov/government/grant/pdm/index.shtm.

C. Flood insurance: There is a special funding provision in the National Flood Insurance Program (NFIP) for insured buildings that have been substantially damaged by a flood, “Increased Cost of Compliance.” ICC coverage pays for the cost to comply with floodplain management regulations after a flood if the building has been declared substantially damaged. ICC will pay up to $30,000 to help cover elevation, relocation, demolition, and (for nonresidential buildings) floodproofing. It can also be used to help pay the 25% owner’s share of a FEMA funded mitigation project.

The building’s flood insurance policy must have been in effect during the flood. This payment is in addition to the damage claim payment that would be made under the regular policy coverage, as long as the total claim does not exceed $250,000. Claims must be accompanied by a substantial or repetitive damage determination made by the local floodplain administrator. For more information, contact your insurance agent or visit: www.fema.gov/plan/prevent/floodplain/ICC.shtm.

Coverage under the ICC does have limitations: It covers only damage caused by a flood, as opposed to wind or fire damage. The building’s flood insurance policy must have been in effect during the flood. ICC payments are limited to $30,000 per structure. Claims must be accompanied by a substantial or
repetitive damage determination made by the local floodplain administrator and the structure must be in an A zone.

The average claims payment in the study area is $18,911.054. With an average claim of that amount, it is not likely that many homes in the study area would sustain substantial damage from a flood event. Homeowners should make themselves aware of the approximate value of their homes, and in the case of incurring flood damage, be aware of the need for a substantial damage declaration in order to receive the ICC coverage.

Severe Repetitive Loss ICC Pilot Program: While the conventional ICC only covers buildings that are located in the Special Flood Hazard Areas (SFHA), there is a new pilot program that is aiming to target buildings not in the SFHA. Focusing specifically on Severe Repetitive Loss (SRL) buildings, this pilot program will offer ICC benefits to those SRL properties that are located in X zones and will include those SRL buildings that have grandfathered X zone rates. Under this new pilot program, the ICC benefits could be used to cover the homeowner’s 10% match in a SRL grant.

Alternative language adopted into the local floodplain management ordinance would enable residents with shallower flooding to access ICC funding. Since local ordinances determine the threshold at which substantial damage and/or repetitive claims are reached, adopting language that would lower these thresholds would benefit the homeowners of repetitive loss properties. Adopting alternative language allows for cumulative damages to reach the threshold for federal mitigation resources more quickly, meaning that some of the properties in St. Petersburg that sustain minor damage regularly would qualify for mitigation assistance through ICC.

D. Rebates: A rebate is a grant in which the costs are shared by the homeowner and another source, such as the local government, usually given to a property owner after a project has been completed. Many communities favor it because the owner handles all the design details, contracting, and payment before the community makes a final commitment. The owner ensures that the project meets all of the program’s criteria, has the project constructed, and then goes to the community for the rebate after the completed project passes inspection.

Rebates are more successful where the cost of the project is relatively small, e.g., under $5,000, because the owner is more likely to be able to afford the bulk of the cost. The rebate acts more as an incentive, rather than as needed financial support.

E. Small Business Administration Mitigation Loans: The Small Business Administration (SBA) offers mitigation loans to SBA disaster loan applicants who have not yet closed on their disaster loan. Applicants who have already closed must demonstrate that the delay in application was beyond their control.

For example, mitigation loans made following a flood can only be used for a measure to protect against future flooding, not a tornado. If the measure existed prior to the declared disaster, an SBA mitigation loan will cover the replacement cost. If the measure did not exist prior to the declared disaster, the mitigation loan will only cover the cost of the measure if it is deemed absolutely necessary for repairing the property by a professional third-party, such as an engineer.
APPENDIX A: POSTCARD TO RESIDENTS

Dear Resident:

You have received this postcard because your property is in an area that is subject to repetitive flooding. The city has an active program to help you protect yourself and your property from future flooding.

City staff will visit your neighborhood soon to collect data on flooding issues. Your input is greatly appreciated. Please send flooding concerns to: Noah.Taylor@stpete.org or call 727-893-SAVE (7283).

Be sure to include your address and contact information. Thank you for your participation.
APPENDIX B: HOMEOWNER’S COMMENTS*

Homeowner Comments from 2016

- According to homeowner they are the first ones to flood and last to drain. Many neighbors are fed up with the flooding and are selling their homes after 25 plus years of living there.
- Homeowner claims that a house that was built some years ago has caused more flooding. Needs some kind of trench on the side of the house as per other homeowner.
- Reported by homeowner that there has been flooding near the carport "den" area, water pooling in street is further spread from people driving in the street and causing the water to splash against the house. Only time it floods is from big storms in gulf.
- Homeowner reported ponding in some areas of front yard and left side of house there is a lot of water that ponds in that area near foundation.
- According to homeowner when there is a full moon or high tide the street will flood.
- Homeowner wanted to know why new improvements were not working in Shore Acres.

Homeowner Comments from 2017

- Reported flooding in street New Hampshire and chancellor.
- Some flooding on Dover Street and Venetian with rain and high tides.
- Issues with flooding issues on Harrisburg & Connecticut.
- Flooding issues in the Bayou Grande Blvd Street, between Denver and Pennsylvania. Floods from 62nd towards Bayou Grande. Happens during high tide and heavy rain or combination.
- Denver Park has flooding from drainage ditch into homeowner’s yard; ditch and drains seem to be clogged.
- Reported issue with standing water near Helena St Northeast, after high tides fill gutters.
- Flooding reported at the intersections of Venetian Blvd Northeast, during even the slightest rain storm.
- Major concern about flooding that happens in Ponderosa Shores and on Dakota Ave Northeast.
- Reported that Helena and Delaware continuing east flood, where vehicles sometimes drive in yards to avoid flooded roads.
- Comment about worst section being 40th and Shore Acres Blvd by the pool and Shore Acres Blvd from the pool to 46th Ave Northeast. Also Venetian Blvd/Bayou Grande and Chancellor/Grand Canal.
- Repetitive flooding at corner of Overlook Dr Northeast and Shore Acres Blvd Northeast.
- Significant change to flooding on Helena St Northeast after City put in new storm drains. Homeowner reports they are very happy with the improvements.
- After raising parts of home and floodproofing doors with barriers, homeowner reports that they have had little to no damage from flooding to their home. They have however, seen waves come under the doors from people creating wakes in the roads, when they drive past.
- Major flooding reported at Delaware and Carson Street. Homeowner would like to see people restricted in speed when streets are flooded to minimize wakes created. They also encourage the City to continue to upgrade backflow preventers and give incentives for people to build with sea level rise taken into consideration.
- Comment from homeowner as to why the southern section of Helena St Northeast has been mitigated, but the northern section hasn’t seen any stormwater construction. They have flooding...
issues and would like to see their taxes going to pay for flood mitigation to improve the storm
drains along the northern section of Helena.

- Concerns over the sewer manhole covers and better seals was mentioned concerning Bayou Grande
Blvd Northeast. Reported bubbling saltwater could be seen over the manhole covers.

**Homeowner Comments from 2018**

- Area is constantly flooded after small rain storms and would like to see improved drainage in the
area.
- Expressed interest about storm drainage systems with no back flow from residential areas to bay.
- City road drainage pipe is blocked open due to heavy amounts of debris and results in increased
vehicle corrosion damage. The faulty drainage pipe also increases property degradation by killing
grass and eroding soil due to vehicle traffic.
- During periods of flooding on Dover Street, Residents are forced to wade through unsanitary waters
or risk of possible vehicle damage.
- Some properties on Venetian Blvd. have noticed perpetual standing waters under power lines.
- Homeowner that wanted to know if the city could put up “no-wake” signs in Shore Acres.
- Residents that live on Massachusetts Ave NE have expressed interest for the city to address the
high tide problem areas, explicit concerns for Helena Street.
- Residents of Alabama Street have commented on the severity of flooding with average amounts of
rainfall and are interested in city actions to correct this.
- Severe flooding by residents was reported at Arizona & Overlook Dr.
- Residents on Bayshore Blvd NE experience flooding in the streets during heavy rain fall and
believes that this may be the result of a blocked or faulty drainage pipe.
- Some residents along Shore Acres Blvd NE have expressed interest in being involved at a
community level in aiding the future planning of repetitive flood areas. There are also concerns
about many of the surrounding drainage pipes being blocked or faulty.
- Residents have expressed concern about the condition of drainage systems on Chancellor and
Massachusetts all the way up to Lansing and would like to see the roads repaired as well.

**Homeowner Comments from 2019**

- One comment from a homeowner about Arkansas Ave and Overlook Dr., with flooding concerns
from 3 inches of rain. Storm drains in the street don't seem to be effective.
- A resident on Alabama Ave NE, suffers from pretty bad flooding when it rains along with high
tide and water has breached their garage pretty far up from the street during Tropical Storm
Hermine a few summers back.
- Homeowner reports flooding issues in their neighborhood and especially on the corner of
Arkansas and Cheyenne.
- Concerned homeowner on Shore Acres Blvd. reports: In the summer months and especially
when a storm sits off the coast, the higher tides flood the street with salt water. That salt water
corrodess the undercarriage of vehicles which causes premature and costly repairs. Additionally,
because some local residents do not understand to drive slowly, the wave action caused by
speeding cars cause erosion on property. City repairmen have attempted to replace the one-
way valve in the drain pipes but to date, those repairs/replacement systems do not work and
they still report having salt water in the streets during high-high tides.
• There is constant flooding on the corner of Dover and N Dakota. The homeowners continually experience flooding with anything more than a rain shower. They claim that storm drains directly in front of their home in the last four years have never been cleaned or inspected once. The homeowners have made a request via phone to the city early in 2018 and that went without response. They are concerned the flooding is much broader than storm drain cleanings, but it's not a bad place to start. They notice debris from trees and surrounding yards have clearly found their way into the drains and certainly are not helping in the matter. Standing water has eventually even started to damage the asphalt road on the corner and expected to get worse especially as the summer rain season approaches.

• Homeowners on Connecticut Ave NE, who have been in their home for over 20 years report. We live on Connecticut Ave. NE, which is one of the main exit routes. Their concerns: Excessive speed of drivers who decide to drive through the flooded streets thus pushing water into their homes!!! Excessive speed in general...not just during flooding. Drivers detouring through yards and neighbors' yards to avoid high water at intersections causing property damage. Non-residents driving into the neighborhood to "SEE" the flooded streets thus pushing water into homes!!! The lack of barricades during these flood events to prevent drivers from going through high water. Two years ago during a non-hurricane event...just an unusual high tide, a driver decided to go through the flooded intersection of Indianapolis and Connecticut...his car stalled. His stalled vehicle was pushed out of the intersection and into my yard. Instead of calling a tow truck, the driver continued to try and start his car over and over and over for the next 2 hours. It eventually caught on fire and burned up within minutes. Luckily no one was injured and our home didn't catch on fire! Limiting incoming traffic to residents and emergency response vehicles would be helpful.

• Another homeowner commented that the Storm drains need to be cleaned, they are full of debris causing the flapper valves to be blocked so that the rain/wind push an enormous amount of water out into the streets. The worst of the flooding occurs at the intersection of Bayou Grande and Venetian Blvd.

• Homeowners living on Venetian Blvd NE mention they have gone through several tropical storms. It has been their experience that flooding occurs mainly in the spring and fall in the neighborhood due to a poorly designed run off system that overflows at high tide. For example, the street where Denver runs into Venetian Blvd and then runs to Bayou Grand always floods at high tide. The same thing happens with almost every intersection in the neighborhood. Often, the drains are plugged with foreign matter. The city seems to be slow to clean these drains on a regular basis. The same thing occurs on 62nd Avenue next to the golf course.

• Because one homeowners house sits on an incline the only water we saw was Venetian flooded in front of our driveway. But Irma had two very interesting things happen. The first one is that the city closed off Shore Acres at an inopportune time. We got stuck in our house because we could not go back and forth to get supplies without the threat of being blocked from reentry. This is concerning because in a medical emergency, how in the world could we have gotten home or even to the grocery store? The city needs to rethink the access plan. Second in light of the hurricane and subsequent street flooding the city posted signs warning kids not to play in the water down around the Vinoy hotel and north towards Snell island. No such warning was ever posted in Shore Acres. You are all lucky that a child did not get sick up here.

• After receiving a the postcard from the city a homeowner responded: We haven't experienced flooding up to the house since we moved here in October, but when the tide is high and it is raining, the street floods from the sewers (sometimes about 4 feet deep). It has flooded all the way up the driveway. We on Huntington St NE and near the corner of Connecticut Street.
• A homeowner had two suggestions the City take: Step1: stop bay water from backing into streets via sewer system. If there are drain pipes leading to the bay, cap them. If there are broken pipes, fix them. Step 2: install a 3” pipe a foot below street level with a pump that will shoot the water over the nearest sea wall. Attach it to a float switch so it automatically turns on when water rises just below street level. Most streets that flood here are within 200 feet of a sea wall.

• Severe flooding was reported on Massachusetts Avenue, between Chancellor and Huntington. Water seems to especially accumulate on the west side of the Massachusetts-Chancellor intersection proportionately to the east side of the same intersection, or any other area of the block for that matter. I believe there are a couple of correctable issues that are ancillary to the main issue of a low flood plain:

1. The gutter on the west side of the Massachusetts – Chancellor intersection is constantly filled with debris. There is a very large Australian Pine tree, that has been cut back several times over that dumps a tremendous amount of organic debris on that gutter. This has caused backups when other low-lying areas of shore acres drain properly.

2. There is always water in the gutter on the West Side of the Massachusetts – Chancellor intersection due to the buildup from chancellor street. The standing water is forced to evaporate because the gutter and street on that section of Massachusetts is lower than the gutter. The resident has personally shoveled the gutter along a neighbor’s side yard to allow that side of the street to drain. What I found was that the water will not drain even with the gutter completely cleared of debris, grass, etc., because it slopes up to the sewer. Thus, forcing the water to remain static on the side of the street.

• A current homeowner on Connecticut Ave NE states: I’ve noticed every time I run my sprinklers, or it’s rained, I will have standing water in the dip to my driveway. It dries up in the areas next to it but for some reason it’s deeper there than anywhere else. I was hoping with the recent postcard about the city evaluating the flooding issues in my area that this could be fixed. I would like to get pavers in my driveway but I’ve decided not to do so until this problem is fixed because of the tracks in the driveway my tires make as I pull in and run through the water. Connecticut Avenue also floods quite often even when it hasn’t rained, most likely due to high tide.

• Homeowner that lives on Shore Acres Blvd NE and Overlook Dr. explains: We have lived here for over 3 years and witnessed a lot of flooding along Shore Acres Blvd between Overlook and 40th Ave. We have had to use sick days from work on rainy days that correlate with a high tide. I ended up having to get a new car and my decision factored around one that was high enough off the ground that I could drive up my street in the rain. The flooding right at the stop sign directly in front of our driveway gets deep fast and people who did not realize the water depth have been stranded. We had someone park their car in our driveway overnight during a rain storm and walk the rest of the way home because they had nowhere else to safely go in their car. We did get to experience paddling up and down our street in a tandem kayak during a tropical storm shortly after we moved in. Of course, that’s a tropical storm but I have seen flooding that resembles that with only a super high tide and barely any rain. When the sun is shining and the streets are flooded from solely a high tide is also concerning, and that happens frequently.

• A resident reported that the corner of Arkansas and Cheyenne ALWAYS floods after rain – and takes a very long time to drain out.

*These comments were collected while in the field and from phone calls or emails.